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Abstract

Bayesian inference is very simple from a conceptual point of view: Once the like-
lihood and prior distributions are specified Bayes’ theorem allows to derive the
posterior probability for every specified parameter vector. However, in most situa-
tions the posterior distribution is required primarily for the purpose of evaluating
expectation values of a function of interest f (θ) with respect to the posterior,

〈f (θ)〉 =

∫
dθ f (θ) p (θ|D, I) =

∫
dθ f (θ)

p∗ (θ)

Z
(1)

The normalization constant of the unnormalized distribution p∗ (θ) is given by

Z =

∫
dθ p∗ (θ) . (2)

These integrals over the parameter space are commonly high-dimensional and ana-
lytically intractable, except in very rare circumstances, so that typically neither the
expectation value nor the normalization constant are at hand - the latter the key
quantity for Bayesian model comparison. Also the marginalization of parameters
requires integration in often high-dimensional spaces. There are two different ways
to proceed. Either the integrant of Eq. (1) is approximated by a different, more
easily accessible function or the integral itself is approximated by numerical inte-
gration or by sampling (MCMC) techniques. In the tutorial the key concepts and
algorithms to evaluate these integrals are presented and their respective merits are
compared using real-world examples.
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